Icon Orbit  Orbit 16 publication in Small (2015)

Del Rio Martinez J.M., Zaitseva E., Petersen S., Baaken G., Behrends J.C.

Small (2015) 11(1):119-125


Efficient use of membrane protein nanopores in ionic single-molecule sensing requires technology for the reliable formation of suspended molecular membranes densely arrayed in formats that allow high-resolution electrical recording. Here, automated formation of bimolecular lipid layers is shown using a simple process where a poly(tetrafluoroethylene)-coated magnetic bar is remotely actuated to perform a turning motion, thereby spreading phospholipid in organic solvent on a nonpolar surface containing a <1 mm2 4 × 4 array of apertures with embedded microelectrodes (microelectrode cavity array). Parallel and high-resolution single-molecule detection by single nanopores is demonstrated on the resulting bilayer arrays, which are shown to form by a classical but very rapid self-assembly process. The technique provides a robust and scalable solution for the problem of reliable, automated formation of multiple independent lipid bilayers in a dense microarray format, while preserving the favorable electrical properties of the microelectrode cavity array.

Download here

Back to Overview

Contact Us

Please type your full name.
Invalid email address.
Invalid Input
Invalid Input
Nanion Technologies GmbH

Ganghoferstr. 70A
D-80339 Munich - Germany