• CardioExcyte 96

    Combined impedance and MEA-like recordings
  • CardioExcyte 96

    For cardiac safety screening
  • CardioExcyte 96

    Next generation label-free cell analysis
  • CardioExcyte 96

    Intuitive data analysis & arrhythmia detection
  • CardioExcyte 96

    Transparent plates available for imaging

2016 - Identification of Drug-Drug Interactions In Vitro: A Case Study Evaluating the Effects of Sofosbuvir and Amiodarone on hiPSC-Derived Cardiomyocytes

Icon CE  CardioExcyte 96 publication in Toxicological Sciences (2016)

Authors:
Millard DC, Strock CJ, Carlson CB, Aoyama N, Juhasz K, Goetze TA, Stoelzle-Feix S, Becker N, Fertig N, January CT, Anson BD, Ross JD.

Journal:
Toxicol Sci (2016) 154(1):174-182  doi: 10.1093/toxsci/kfw153


Abstract:
Drug–drug interactions pose a difficult drug safety problem, given the increasing number of individuals taking multiple medications and the relative complexity of assessing the potential for interactions. For example, sofosbuvir-based drug treatments have significantly advanced care for hepatitis C virus-infected patients, yet recent reports suggest interactions with amiodarone may cause severe symptomatic bradycardia and thus limit an otherwise extremely effective treatment. Here, we evaluated the ability of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) to recapitulate the interaction between sofosbuvir and amiodarone in vitro, and more generally assessed the feasibility of hiPSC-CMs as a model system for drug–drug interactions. Sofosbuvir alone had negligible effects on cardiomyocyte electrophysiology, whereas the sofosbuvir-amiodarone combination produced dose-dependent effects beyond that of amiodarone alone. By comparison, GS-331007, the primary circulating metabolite of sofosbuvir, had no effect alone or in combination with amiodarone. Further mechanistic studies revealed that the sofosbuvir-amiodarone combination disrupted intracellular calcium (Ca2+) handling and cellular electrophysiology at pharmacologically relevant concentrations, and mechanical activity at supra-pharmacological (30x Cmax) concentrations. These effects were independent of the common mechanisms of direct ion channel block and P-glycoprotein activity. These results support hiPSC-CMs as a comprehensive, yet scalable model system for the identification and evaluation of cardioactive pharmacodynamic drug–drug interactions. 


Download here

Back to Overview

Contact Us

Please type your full name.
Invalid email address.
Invalid Input
Invalid Input
Nanion Technologies GmbH

Ganghoferstr. 70A
D-80339 Munich - Germany
info@nanion.de