• CardioExcyte 96

    Combined impedance and MEA-like recordings
  • CardioExcyte 96

    For cardiac safety screening
  • CardioExcyte 96

    Next generation label-free cell analysis
  • CardioExcyte 96

    Intuitive data analysis & arrhythmia detection
  • CardioExcyte 96

    Transparent plates available for imaging

2017 - Combined Impedance and Extracellular Field Potential Recordings from Human Stem Cell-Derived Cardiomyocytes 

Icon CE  CardioExcyte 96 book chapter in Stem Cell-Derived Models in Toxicology (2017)

Authors: 
Obergrussberger A., Thomas U., Stölzle-Feix S., Becker N., Juhasz K, Doerr L., Beckler M., George M., Fertig N.

Book chapter: 
In: Stem Cell-Derived Models in Toxicology. . Methods in Pharmacology and Toxicology. (2017) Humana Press


Abstract: 

Measurement of contractility using impedance is a novel method for gaining information about a drug candidate’s potential to disturb cardiac cell contraction. The impedance signal is recorded from a monolayer of cardiac cells, most commonly derived from human-induced pluripotent stem cells (hiPSCs), which are becoming an attractive model for safety testing, especially in the light of the Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative introduced in 2013. The goal of this initiative is, in part, to standardize assays, targets, and cell types but also to evaluate the potential of new technologies, in this context, such as impedance. The CardioExcyte 96 is a hybrid system that combines the impedance readout (a measure of cell contractility) with extracellular field potential (EFP) recordings. This chapter focuses on cell handling of hiPSC cardiomyocytes (CMs) and the short- and long-term investigation into pharmacological effects of a wide range of pharmacological agents, including flecainide, nifedipine, isoproterenol, and E4031 using the CardioExcyte 96.


Download here

Back to Overview

Contact Us

Please type your full name.
Invalid email address.
Invalid Input
Invalid Input
Nanion Technologies GmbH

Ganghoferstr. 70A
D-80339 Munich - Germany
info@nanion.de