• SURFE2R N1

    Easy-to-learn all-in-one device, ideal for teaching and university research
  • SURFE2R N1

    Finally label-free functional assays for transporters available
  • SURFE2R N1

    High signal amplification compared to patch-clamp: transport & binding assays
  • SURFE2R N1

    The only instrument on the market for SSM-based electrophysiology
  • SURFE2R N1

    Turn-key system for efficient transporter protein analysis

2013 - Enhanced adsorption of Ca-ATPase containing vesicles on a negatively charged solid supported membrane for the investigation of membrane transporters

Icon N1   SURFE²R N1 publication in Langmuir (2013)

Authors: 
Sacconi A., Moncelli M.R., Mergheri G., Tadini-Buoninsegni F.

Journal: 
Langmuir (2013) 29(45):13883–13889


Abstract: 

A convenient model system for a biological membrane is a solid-supported membrane (SSM), which consists of a gold-supported alkanethiol|phospholipid bilayer. In combination with a concentration jump method, SSMs have been used for the investigation of several membrane transporters. Vesicles incorporating sarcoplasmic reticulum Ca-ATPase (SERCA) were adsorbed on a negatively charged SSM (octadecanethiol|phosphatidylserine bilayer). The current signal generated by the adsorbed vesicles following an ATP concentration jump was compared to that produced by SERCA-containing vesicles adsorbed on a conventional SSM (octadecanethiol|phosphatidylcholine bilayer). A significantly higher current amplitude was recorded on the serine-based SSM. The adsorption of SERCA-incorporating vesicles on the SSM was then characterized by surface plasmon resonance (SPR). The SPR measurements clearly indicate that in the presence of Ca2+ and Mg2+, the amount of adsorbed vesicles on the serine-based SSM is about twice that obtained using the conventional SSM, thereby demonstrating that the higher current amplitude recorded on the negatively charged SSM is correlated with a greater quantity of adsorbed vesicles. The enhanced adsorption of membrane vesicles on the PS-based SSM may be useful to study membrane preparations with a low concentration of transport protein generating small current signals, as in the case of various recombinantly expressed proteins.


Download here

Back to Overview

Contact Us

Please type your full name.
Invalid email address.
Invalid Input
Invalid Input
Nanion Technologies GmbH

Ganghoferstr. 70A
D-80339 Munich - Germany
info@nanion.de