• SyncroPatch 384/768PE

    APC with highest throughput on the market
  • SyncroPatch 384/768PE

    384 cells in parallel => upgradable to 768
  • SyncroPatch 384/768PE

    True HTS AND Gigaohm seals
  • SyncroPatch 384/768PE

    True internal perfusion with continuous data acquisition
  • SyncroPatch 384/768PE

    Assay flexibility via high tech

2015 - Electrophysiological analysis of mammalian cells expressing hERG using automated 384-well-patch-clamp

icon sp96  SyncroPatch 384PE publication in BCM Pharmacology and Toxicology (2015)

Authors: 
Haraguchi Y., Ohtsuki A., Oka T., Shimizu T.

Journal: 
BMC Pharmacol Toxicol (2015) 16(1):39


Abstract: 

Background
An in vitro electrophysiological assay system, which can assess compound effects and thus show cardiotoxicity including arrhythmia risks of test drugs, is an essential method in the field of drug development and toxicology.

Methods
In this study, high-throughput electrophysiological recordings of human embryonic kidney (HEK 293) cells and Chinese hamster ovary (CHO) cells stably expressing human ether-a-go-go related gene (hERG) were performed utilizing an automated 384-well-patch-clamp system, which records up to 384 cells simultaneously. hERG channel inhibition, which is closely related to a drug-induced QT prolongation and is increasing the risk of sudden cardiac death, was investigated in the high-throughput screening patch-clamp system.

Results
In the automated patch-clamp measurements performed here, Kv currents were investigated with high efficiency. Various hERG channel blockers showed concentration-dependent inhibition, the 50 % inhibitory concentrations (IC50) of those blockers were in good agreement with previous reports.

Conclusions
The high-throughput patch-clamp system has a high potential in the field of pharmacology, toxicology, and cardiac physiology, and will contribute to the acceleration of pharmaceutical drug development and drug safety testing.


Download here

Back to Overview

Contact Us

Please type your full name.
Invalid email address.
Invalid Input
Invalid Input
Nanion Technologies GmbH

Ganghoferstr. 70A
D-80339 Munich - Germany
info@nanion.de